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Falling plumes in bacterial bioconvection
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Experiments by Kessler on bioconvection in laboratory suspensions of bacteria (Bacil-
lus subtilis), contained in a deep chamber, reveal the development of a thin upper
boundary layer of cell-rich fluid which becomes unstable, leading to the formation of
falling plumes. We use the continuum description of such a suspension developed by
Hillesdon et al. (1995) as the basis for a theoretical model of the boundary layer and
an axisymmetric plume. If the boundary layer has dimensionless thickness λ� 1, the
plume has width λ1/2. A similarity solution is found for the plume in which the cell
flux and volume flux can be matched to those in the boundary layer and in the bulk of
the suspension outside both regions. The corresponding model for a two-dimensional
plume fails to give a self-consistent solution.

1. Introduction
Bioconvection is the spontaneous formation of patterns in suspensions of swimming

micro-organisms. Organisms exhibiting bioconvection have two things in common:
they are denser than water and they swim upwards, on average, in still water. Up-
swimming causes the micro-organisms to accumulate in the upper regions of the fluid,
but because they are denser than water this distribution is unstable and an overturn-
ing instability develops, leading to the formation of patterns. The process is similar
to thermal convection in a fluid heated from below, hence the term bioconvection,
first used by Platt (1961).

We are concerned with bioconvection in a suspension of the oxytactic bacterium
Bacillus subtilis, which consumes oxygen and swims up oxygen gradients. In an
initially well-mixed suspension, open to the air at the upper free surface, oxygen is
replenished by diffusion from that surface, so an oxygen gradient develops up which
the bacteria swim. There are two slightly different cases: a ‘shallow’ and a ‘deep’
chamber. In a shallow chamber the oxygen concentration throughout the chamber is
high enough to allow all the bacteria to swim actively. If the chamber is deep, the
oxygen concentration below a certain depth falls below that required for the bacteria
to be active and an inactive zone, in which the bacteria do not swim, forms at the
bottom of the chamber. Experiments in a shallow chamber, such as a petri dish, show
the formation of complex labyrinthine patterns. Experiments in a tilted chamber show
that no patterns form in very shallow regions, but as the depth increases hexagonal
bioconvection patterns are seen and these in turn give way to the labyrinthine patterns
as the depth increases further. Previous mathematical models (Hillesdon, Pedley &
Kessler 1995; Hillesdon & Pedley 1996; Metcalfe & Pedley 1998) have investigated
such phenomena. In this paper we consider a deep chamber.

Figure 1 shows a series of photographs, taken from the side, of bioconvection in
a suspension of B. subtilis contained in a deep chamber made from two microscope
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03:55:14P 03:57:32P

03:58:23P 03:59:21P

04:00:02P 04:00:46P

04:03:24P

Figure 1. A time sequence of photographs, taken from the side, of a deep chamber (depth approx-
imately 7–8 mm) containing a suspension of Bacillus subtilis. Near the surface, where significant
gradients of oxygen exist, the cells swim upwards. A convective instability forms when the vertical
density gradient becomes sufficiently large. Cell-rich plumes descend from the surface carrying
oxygen which resuscitates the inactive cells in the lower region of the chamber. Note that the
successive times are shown at the upper left of each frame. Photograph reproduced from Hillesdon
et al. (1995).
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Figure 2. The three different regions in the plume calculation: plume (A) of width ε,
boundary layer (B) of thickness λ, outer region (C).

slides placed vertically and held 1 mm apart (Kessler et al. 1994). The bottom and
edges of the chamber are sealed but the upper surface is open to the atmosphere. The
light regions contain a high concentration of bacteria and in figures 1(a)–1(c) we can
see the development of a thin, cell-rich upper boundary layer as the bacteria swim
up the oxygen gradient towards the surface. The concentration of bacteria in the
region immediately below the upper layer is therefore reduced. The lower part of the
chamber is too far from the surface for significant amounts of oxygen to reach it by
diffusion and once the cells in this region have consumed the dissolved oxygen they
become inactive. The cell concentration in this lower region remains almost constant,
as can be seen by the grey layer at the bottom of figures 1(a)–1(e). In figures 1(d)–1(f)
we see the formation of falling plumes of dense, cell-rich fluid descending from the
upper layer as it becomes unstable. The descending plumes carry oxygen from the
surface and in figure 1(g) some of the inactive cells in the lower region have been
resuscitated by the oxygen carried by the descending plumes.

We will model the quasi-steady situation in which an upper boundary layer con-
taining a high concentration of bacteria feeds a falling plume of cell-rich fluid. We
consider the suspension as being divided into three separate regions, as shown in
figure 2: a cell-rich upper boundary layer of known thickness λ (region B), a falling
plume of unknown width ε which also contains a high concentration of bacteria
(region A) and the fluid outside the plume (region C), which has to circulate in order
to conserve mass. We will consider the problem both in three dimensions, where
we will assume that the plume is axisymmetric, and in two dimensions. The results
will therefore not be directly applicable to the experiments of figure 1, since the
configuration there is neither axisymmetric nor two-dimensional.

The problem is only quasi-steady because the oxygen concentration is effectively
zero in the lower part of the chamber so that once the bacteria in the plume reach this
lower region they are unable to swim and they remain there rather than swimming
back into the upper boundary layer. Our analysis covers only the upper part of the
chamber in which the oxygen concentration is above zero and ignores the mixing and
(partial) resuscitation that take place in the lower zone. A numerical solution would
probably be required to study the full depth of the fluid.

In the case of thermal convection, similarity solutions can be obtained for a plume
of warm fluid rising from a point or a line source of heat (Yih 1951, 1952) and this
prompts us to seek similarity solutions for the falling plumes of cell-rich fluid such
as those seen in the experiment of figure 1. As with thermal plumes from a source of
finite size, the similarity solution is expected to be valid only at distances which are
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large compared with the size of the source. The problem of bioconvection is more
complex than the thermal convection problem since it contains two diffusing and
interacting species. The problem is not one of double-diffusive convection, however,
because only one of the diffusing species, the cells, contributes to the density, but a
further complication is introduced by the interaction of the cells and the oxygen.

Two-dimensional convection in the limit of infinite Prandtl and Rayleigh number
(fast, viscous flow) has been studied for the case of a heated strip in an infinite
horizontal plane (Roberts 1977). In this limit, the heat from the heated boundaries
can only penetrate thin boundary layers and thermal plumes in which the motion is
driven by buoyancy forces and the fluid velocity is approximately constant across the
plume. Roberts (1977) solved the heat equation in the thin layer and plume by using
the stream function as a transverse coordinate and found an asymptotically valid
expression for the dimensionless heat flux as the Rayleigh number tends to infinity.

It is possible that, in some bacterial experiments, chemotaxis and oxygen consump-
tion are important only in setting up the basic state and that once this is set up the
resulting plumes are entirely buoyancy driven and the cells are merely advected. In
this case the plume problem would reduce essentially to that of Roberts (1977), except
that the velocity would vary across the plume, or Yih (1951, 1952). However, we are
investigating plumes where chemotaxis and oxygen consumption are important in the
plume itself.

For gyrotactic algae, Ghorai & Hill (1999) found a model for a steady plume which
is independent of the vertical coordinate. In that model, cell diffusion out of the
plume is balanced by gyrotactic focusing into the plume. It is not possible to obtain
a similar Z-independent solution using our model for bacterial chemotaxis since in
the absence of a gyrotactic term there is nothing to balance the diffusion of cells out
of the plume. Chemotaxis causes cells to swim out of the plume because the high
concentration of cells in the plume leads to a lower concentration of oxygen there
than in the surrounding fluid.

We first descibe the axisymmetric case: in § 3 we describe the solution in the upper
boundary layer and in § 4 we consider the falling plume and find a similarity solution
for this region, analagous to that for a standard thermal plume (Yih 1951, 1952) in
which the cell flux is constant. We then find a solution for the flow in the outer region,
assuming that the Reynolds number is small (§ 5), and finally match the solutions in all
three regions (§ 6). We find that the solutions in the different regions are consistent only
if the width of the plume, ε, is given by λ1/2; we are also able to determine the value
of the cell flux. The model for the two-dimensional case is similar. We find a solution
in the upper boundary layer (§ 7.1) and for the flow in the outer region (§ 7.3) but the
partial differential equations governing the plume itself appear not to have a similarity
solution (§ 7.2) and a fully numerical solution is beyond the scope of this study.

2. Governing equations
The problem is described by an equation for concentration of cells (Ñ) and an

equation for oxygen concentration (C̃) together with the Navier–Stokes equations
(using the Boussinesq approximation) and the continuity equation. This formulation
and the steady-state solution is that of Hillesdon et al. (1995). The dimensional
equation for cell conservation is

∂Ñ

∂T
= −∇ · (ÑŨ + ÑV − DN · ∇Ñ), (2.1a)
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in which the cell-flux vector contains a term for advection of cells with the bulk
fluid velocity Ũ and two terms describing cell swimming. The random aspects of cell
swimming are modelled by a diffusive term, where DN is the cell diffusivity, and the
directional part of cell swimming is modelled by a superimposed average swimming
velocity, V (Keller & Segel 1971a, b).

The equation for oxygen conservation is

∂C̃

∂T
= −∇ · (C̃Ũ − DC∇C̃)−KÑ. (2.1b)

The oxygen flux vector contains terms for advection and diffusion of oxygen, where
DC is the oxygen diffusivity. The term −KÑ describes the consumption of oxygen by
the bacteria where K is proportional to the rate of oxygen consumption per cell.

The governing equations contain no terms for bacterial reproduction and death or
cell sedimentation since these effects are negligible on the short timescales associated
with bioconvection (Hillesdon 1994). We also ignore gyrotaxis, the orientation of cells
by viscous forces in a shear flow, although this has been found to be important in
bioconvection of algae such as Chlamydomonas nivalis (Kessler 1985; Hill, Pedley &
Kessler 1989; Pedley & Kessler 1990; Bees & Hill 1998); however, there is currently
no quantitative model for gyrotaxis among chemotactic organisms (see Bearon &
Pedley 2000 for a first approach to such a model).

The bacteria can be thought of as requiring a minimum concentration of oxygen,
Cmin, in order to be active. This is taken into account by non-dimensionalizing the
oxygen concentration as

θ =
C̃ − Cmin
C0 − Cmin ,

where C0 is the initial and free-surface oxygen concentration. The cell diffusion is
modelled as an isotropic tensor, DN = DN0H(θ)I where H(θ) is the step function, the
directional cell swimming as proportional to the gradient of θ, V = bVsH(θ)∇θ, and
the oxygen consumption as K = K0H(θ). bVs, DN0 and K0 are taken to be given
constants; b has dimensions of length so that Vs has dimensions of velocity.

The other variables are non-dimensionalized as:

N =
Ñ

N0

, Z =
Z̃

h
, t =

DN0

h2
T , U =

h

DN0

Ũ , (2.2)

where h is the depth of the chamber and N0 is the initial cell concentration. The
vertical coordinate Z is measured downwards so that Z = 0 is the free surface at the
top of the chamber and Z = 1 is the bottom of the chamber. The non-dimensionalized
equations are

∂N

∂t
= ∇ · [H(θ)∇N −UN −H(θ)γN∇θ], (2.3a)

∂θ

∂t
= ∇ · (δ∇θ −Uθ)−H(θ)δβN, (2.3b)

∇ ·U = 0, (2.3c)

Sc−1

[
∂U

∂t
+ (U · ∇)U

]
= −∇Pe + ∇2U + ΓNẐ . (2.3d)
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The dimensionless parameters are

β =
K0N0h

2

DC(C0 − Cmin) , γ =
bVs

DN0

, δ =
DC

DN0

, Γ =
vN0gh

3(ρc − ρw)

νDN0ρw
, Sc =

ν

DN0

,

(2.4)

where v is the volume of a cell, ρc and ρw are the densities of a cell and water,
respectively, g is the acceleration due to gravity and ν is the kinematic viscosity of
the fluid. The parameter β represents the strength of oxygen consumption relative
to its diffusion, γ is a measure of the relative strengths of directional and random
swimming and δ is the ratio of oxygen diffusivity to cell diffusivity. Γ is analogous to
the Rayleigh number in thermal convection and Sc is a Schmidt number.

A no-slip condition is imposed at the bottom of the chamber and a stress-free con-
dition at the free surface. The other boundary conditions are: zero vertical component
of fluid velocity at the upper and lower boundaries, zero cell flux at all boundaries,
zero oxygen flux at the bottom of the chamber and C = C0 at the free surface. These
boundary conditions are thus:
at Z = 0,

U · Ẑ = 0,
∂2

∂Z2
(U · Ẑ) = 0, θ = 1, H(θ)

∂N

∂Z
− γNH(θ)

∂θ

∂Z
= 0;

at Z = 1,

U · Ẑ = 0, U × Ẑ = 0,
∂θ

∂Z
= 0,

∂N

∂Z
= 0.

Hillesdon et al. (1995) found a steady-state solution in which the fluid velocity
is zero and diffusion of cells (random cell swimming) balances chemotaxis (mean
swimming up the oxygen gradient), while oxygen diffusion is balanced by oxygen
consumption. The steady-state distributions of bacteria (n0) and oxygen (θ0) depend
only on Z , and whether the chamber is deep or shallow depends on the value
of β and γ. If β < (2/γ)σ tan−1 σ, where σ2 = eγ − 1, the chamber is sufficiently
shallow that the oxygen concentration is always greater than zero and the steady-
state solution is fully analytic. In a deep chamber (β > (2/γ)σ tan−1 σ), the steady-state
oxygen concentration is zero below a depth Z = zc where the value of zc is found
by numerical solution of the initial-value problem. Some chemotactic upswimming
occurs before the steady state is set up because the suspension is initially well stirred
so that even the bacteria at the bottom of the chamber are active until they have
used up all the available oxygen. The total number of cells in the region 0 < Z < zc
is αc =

∫ zc
0
n0 dZ , which can also be found from solution of the initial-value problem

and we expect zc 6 αc < 1. The deep chamber solution for 0 6 Z 6 zc is

n0 =
2A2

1

βγ
sec2(A1(zc − Z)), θ0 = 1− 2

γ
log

(
cos (A1(zc − Z))

cosA1zc

)
, (2.5)

where A1zc = tan−1 σ and αc = (2σ/βγzc) tan−1 σ. For β = 75, γ = 10, δ = 1 Hillesdon
et al. (1995) found zc = 0.77 and αc = 0.80, for example.

In what follows, we will consider only the region in which θ > 0, i.e. 0 < Z < zc, and
we therefore make a slight alteration to the non-dimensionalization of Hillesdon et al.
(1995). Instead of using the overall depth of the chamber, h, to non-dimensionalize
the depth Z̃ we will use hzc, the depth of the upper region in which θ > 0. In (2.2)
and (2.4), h should therefore be replaced by hzc. The symbols Z , t, U , β and Γ now
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β γ δ αc

K0N0h
2z2
c

DC (C − Cmin)
bVs

DN0

DC

DN0

∫ 1

0

n0 dZ

45 10 1 1.04

Table 1. Definitions and values of the parameters and αc for the new non-dimensionalization.

refer to the newly non-dimensionalized quantities (note that β and Γ now involve zc)
and the steady-state distributions are given by

n0 =
2A2

βγ
sec2(A(1− Z)), θ0 = 1− 2

γ
log

(
cos (A(1− Z))

cosA

)
, (2.6)

where A = tan−1 σ, A < 1
2
π and αc = (2σ/βγ) tan−1 σ, where now αc =

∫ 1

0
n0 dZ .

We will consider only deep chambers where in the new notation β/z2
c >

2
γ
σ tan−1 σ.

Table 1 shows the values for the previously mentioned (β = 75 etc.) steady state from
Hillesdon et al. (1995), according to the new non-dimensionalization.

3. Axisymmetric upper boundary layer for βγ � 1

Hillesdon et al. (1995) found that the steady-state cell concentration n0 has a very
thin upper boundary layer containing a high concentration of bacteria when βγ � 1
and they developed a boundary-layer scaling in this limit (see Appendix B of that
paper). Physically, βγ � 1 means that oxygen consumption by the bacteria is large
relative to oxygen diffusion from the free surface (large β) and/or that directional
cell swimming is strong relative to random cell swimming (large γ). Since we are
concerned only with the case in which the cell-rich upper boundary layer (B in figure
2) is narrow, we will only consider the case βγ � 1. We assume that the upper
boundary layer feeds cells into a narrow falling plume (A).

Hillesdon et al. (1995) defined a small parameter λ by

λ =
2

βγ
, (3.1)

and scaled the vertical coordinate Z as

Z = λz, (3.2a)

the horizontal coordinates remaining unchanged. The cell concentration and oxygen
concentration were scaled as

N = λ−1n, θ = 1 +
2

γ
C. (3.2b)

In the absence of fluid motion they found that the steady-state solution is then

n = n0 =
1

(a+ z)2
, C = c0 = − log

(
a+ z

a

)
, (3.3)

for some constant a. In a shallow chamber with no fluid motion, a = 1. Rescaling the
deep chamber steady-state solution (2.6) in the upper boundary layer gives a = α−1

c .
The value of αc given in table 1 gives a = 0.96.
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We first consider the upper boundary layer, B, in the axisymmetric case. We rewrite
the governing equations (2.3a–d) in terms of cylindrical polar coordinates R, φ and
Z and consider the case where there is no φ dependence and no velocity in the φ
direction so that U can be written as (U, 0,W ). We scale Z , N and θ in the same
way as in (3.2a, b) and scale U, W and P as

U = UBu, W = λUBw, P = PBp,

where UB and PB are scaling factors which are as yet unknown.
Using these scalings the axisymmetric governing equations become:

λ2UB

(
u
∂n

∂R
+ w

∂n

∂z

)
+ 2n

∂2C

∂z2
+ 2

∂n

∂z

∂C

∂z

+2λ2

(
n

R

∂C

∂R
+ n

∂2C

∂R2
+
∂n

∂R

∂C

∂R

)
− ∂2n

∂z2
− λ2

(
1

R

∂n

∂R
+
∂2n

∂R2

)
= 0, (3.4a)

∂2C

∂z2
− n+ λ2

(
1

R

∂C

∂R
+
∂2C

∂R2

)
− λ2

δ
UB

(
u
∂C

∂R
+ w

∂C

∂z

)
= 0, (3.4b)

u

R
+
∂u

∂R
+
∂w

∂z
= 0, (3.4c)

λ2UBSc
−1

(
u
∂u

∂R
+ w

∂u

∂z

)
= −λ

2PB

UB

∂p

∂R
+
∂2u

∂z2
+ λ2

(
1

R

∂u

∂R
+
∂2u

∂R2
− u

R2

)
, (3.4d)

λ2UBSc
−1

(
u
∂w

∂R
+ w

∂w

∂z

)
= − PB

UB

∂p

∂z
+
∂2w

∂z2
+ λ2

(
1

R

∂w

∂R
+
∂2w

∂R2

)
+

Γ

UB

n. (3.4e)

The boundary conditions at z = 0 are

w = C =
∂u

∂z
=
∂p

∂R
= 0,

∂n

∂z
− 2n

∂C

∂z
= 0.

We now expand n, C , u and p in powers of λ:

n = n0 + λn1 + · · · ,
C = c0 + λc1 + · · · ,
u = u0 + λu1 + · · · ,
p = p0 + λp1 + · · · ,

 (3.5)

and assume that λ2UB � 1 so that advection is unimportant at leading order, cell
diffusion is balanced by directional cell swimming and oxygen diffusion is balanced
by oxygen consumption. Leading order in (3.4a) and (3.4b) gives

2n0

∂2c0

∂z2
+ 2

∂n0

∂z

∂c0

∂z
− ∂2n0

∂z2
= 0, (3.6a)

∂2c0

∂z2
− n0 = 0. (3.6b)

These equations have the solution n0 and c0 given in (3.3) but a may now be a
function of R.

If UBλ
2Sc−1 � 1, we can neglect fluid momentum, and the leading-order terms in
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(3.4d) and (3.4e) are

− λ2

UB

PB
∂p0

∂R
+
∂2u0

∂z2
= 0, (3.6c)

− PB
UB

∂p0

∂z
+
∂2w0

∂z2
+

Γ

UB

n0 = 0. (3.6d)

There are three cases to consider here.
If Γ/UB � λ−2, equation (3.6d) requires that we scale PB = O(Γ ) so that the

pressure term balances the buoyancy term. The pressure term in (3.6c) then dominates
to give

∂p0

∂R
= 0. (3.7)

Differentiating (3.6d) with respect to R and using (3.7) gives

∂n0

∂R
= 0,

therefore a must be a constant.
If Γ/UB = O(λ−2), we again scale PB as PB = O(Γ ). Now the pressure and diffusion

terms balance in equation (3.6c) to give

∂p0

∂R
=
∂2u0

∂z2
. (3.8)

Differentiating (3.6d) with respect to R and using (3.3) and (3.8) to substitute for n0

and ∂p0/∂R gives

∂3u0

∂z3
=
−2a′

(a+ z)3
,

where a′ = ∂a/∂R. Integrating this three times with respect to z and applying the
boundary conditions on ∂p0/∂R and ∂u0/∂z at z = 0 gives

u0 = −a′ log (a+ z)− a′

2a2
z2 +

a′

a
z + f(R).

This has u0 → ∞ at the edge of the upper layer, which is unphysical, unless a′ = 0.
Therefore in this case we must again have a constant and in addition u0 = u0(R).

The third case is 1 � Γ/UB � λ−2. Again, we scale PB = O(Γ ) and the diffusion
term dominates in equation (3.6c) to give

∂2u0

∂z2
= 0.

Integrating this twice with respect to z and applying the boundary condition on ∂u/∂z
at z = 0 gives u = u0(R), but in this case a may also be a function of R.

In both the last two cases the function u0(R) cannot be found from the boundary-
layer equations alone. It will be determined only by matching to the outer zone, C.

4. Axisymmetric plumes
4.1. Scaling

In the plume, we scale the radial coordinate as

R = εr, (4.1a)
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where 0 < ε � 1. The vertical coordinate remains Z . We also scale the cell concen-
tration, the oxygen concentration, the vertical and horizontal fluid velocity and the
pressure as

N = NAn, θ = 1 + CAC, W = WAw, U = εWAu, P = PAp, (4.1b)

where NA, CA, WA and PA are scaling factors which are as yet unknown. Using this
scaling and neglecting terms which are obviously O(ε2), the axisymmetric governing
equations become

ε2WA

(
u
∂n

∂r
+ w

∂n

∂Z

)
+ γCA

(
∂n

∂r

∂C

∂r
+
n

r

∂C

∂r
+ n

∂2C

∂r2

)
=
∂2n

∂r2
+

1

r

∂n

∂r
, (4.2a)

ε2WA

δ

(
u
∂C

∂r
+ w

∂C

∂Z

)
+
ε2βNA

CA
n =

∂2C

∂r2
+

1

r

∂C

∂r
, (4.2b)

u

r
+
∂u

∂r
+
∂w

∂Z
= 0, (4.2c)

ε2WASc
−1

(
u
∂u

∂r
+ w

∂u

∂Z

)
= − PA

WA

∂p

∂r
+
∂2u

∂r2
+

1

r

∂u

∂r
− u

r2
, (4.2d)

ε2WASc
−1

(
u
∂w

∂r
+ w

∂w

∂Z

)
= −ε2 PA

WA

∂p

∂Z
+ ε2 NA

WA

Γn+
∂2w

∂r2
+

1

r

∂w

∂r
. (4.2e)

The scaling factors NA, CA, WA and PA are chosen so that the appropriate terms are
retained in (4.2a–e). In order to retain the advection terms, we scale WA = ε−2, and in
order to retain the chemotaxis terms, we let CA = 2/γ (compare equation (3.2b)). The
oxygen consumption term in (4.2b) is therefore (ε2βγ/2)NAn = (ε2/λ)NAn , where λ is
defined in (3.1). In order to retain this term we let NA = λ/ε2. Using these scalings the
buoyancy term ε2(NA/WA)Γn in equation (4.2e), which must be important because
it drives the whole flow, will be retained only if Γ = O(λ−1ε−2). We therefore write
Γ = λ−1ε−2Γ̃ , where Γ̃ is O(1). Finally, in order to keep the pressure term in (4.2e),
we must scale PA = ε−4. The leading term in (4.2d) is therefore ∂p/∂r = 0, hence
p = p(Z).

Substituting for NA, CA and WA in (4.2a, b) we obtain

u
∂n

∂r
+ w

∂n

∂Z
+ 2

∂n

∂r

∂C

∂r
+ 2

n

r

∂C

∂r
+ 2n

∂2C

∂r2
− 1

r

∂n

∂r
− ∂2n

∂r2
= 0, (4.3a)

1

δ

(
u
∂C

∂r
+ w

∂C

∂Z

)
+ n−

(
1

r

∂C

∂r
+
∂2C

∂r2

)
= 0. (4.3b)

Differentiating (4.2e) with respect to r and substituting for NA, WA and Γ gives

Sc−1

(
∂u

∂r

∂w

∂r
+ u

∂2w

∂r2
+
∂w

∂r

∂w

∂Z
+ w

∂2w

∂r∂Z

)
= Γ̃

∂n

∂r
+
∂3w

∂r3
+

1

r

∂2w

∂r2
− 1

r2

∂w

∂r
. (4.3c)

We impose the following boundary conditions on these equations. Symmetry about
r = 0 requires at r = 0:

∂n

∂r
= 0,

∂C

∂r
= 0, u = 0,

∂w

∂r
= 0.

As r →∞ we impose:

n→ 0,
∂C

∂r
→ 0, w → 0.
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4.2. Similarity solution

We now seek a similarity solution to equations (4.3a–c). We let h be the width of the
plume and pose a solution of the form

h ∝ Za, w ∝ Zb, n ∝ Zc, C ∝ Zd, u ∝ Za+b−1. (4.4)

Substituting this solution into equations (4.3) and equating the powers of Z gives
a = 1

2
, b = 0, c = −1, d = 0. Since the plume width, h, is proportional to Z1/2 we

define a similarity variable

η =
r

Z1/2
, (4.5)

and pose a solution

n = Z−1H(η), C = G(η), ψ = ZF(η), u = Z−1/2

(
F

η
− F ′

2

)
, w = −F

′

η
,

(4.6)
where ψ is the streamfunction and primes denote differentiation with respect to η.
This similarity solution is similar to that given for a thermal plume rising from an
isolated point source of heat by Yih (1951) in which the plume width is proportional
to Z 1/2 and the streamfunction is proportional to Z .

Substituting this solution into equation (4.3a), integrating once with respect to η
and applying the boundary conditions at η = 0 gives

HF + 2ηHG′ − ηH ′ = 0. (4.7a)

Substituting into equation (4.3b) gives

ηG′′ + G′ − 1

δ
G′F − ηH = 0, (4.7b)

and substituting into (4.3c), integrating the resulting equation once with respect to η
and applying the boundary conditions as η →∞ gives

1

η
F ′′′ − 1

η2
F ′′ +

1

η3
F ′ + Sc−1

(
1

η3
FF ′ − 1

η2
FF ′′

)
− Γ̃H = 0. (4.7c)

The boundary conditions are:
at η = 0:

H ′ = G′ =
F

η
− F ′

2
=
F ′

η2
− F ′′

η
= 0

as η →∞:

H → 0, G′ → 0,
F ′

η
→ 0.

4.3. Cell and fluid fluxes in the plume

Equation (4.3a) can be written as

1

r

∂

∂r

(
rnu+ 2rn

∂C

∂r
− r ∂n

∂r

)
+

∂

∂Z
(nw) = 0.

Multiplying this by r, integrating from zero to infinity with respect to r and applying
the boundary conditions at r = 0,∞ gives

∂

∂Z

∫ ∞
0

nwr dr = 0, (4.8)
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hence the dimensionless cell flux in the plume,
∫ ∞

0
nwr dr, is independent of Z . We

will denote this constant cell flux by Q. In terms of the similarity solution

Q =

∫ ∞
0

−HF ′ dη. (4.9)

The total fluid flux in the plume is given by

ε2W0

∫ ∞
0

wr dr = Z

∫ ∞
0

−F ′ dη.
The boundary condition F ′/η → 0 as η →∞ (i.e. w → 0 as r →∞) gives F → −M as
η →∞, whereM is a constant. Using this boundary condition and F = 0 at η = 0 gives

ε2W0

∫ ∞
0

wr dr = MZ. (4.10)

The fluid flux in the plume increases with depth, therefore the plume must be
entraining fluid from the region outside the plume. The horizontal fluid velocity
in the plume is given in (4.6). As η → ∞ the boundary conditions F ′/η → 0 and
F → −M give u→ −MZ−1/2η−1. Using the definition of η we therefore have that as
η →∞

u→ −M
r
. (4.11)

We expect a plume solution to exist for each value of the cell flux, Q, and the value
of Q will therefore determine the value of M. Later we find Q by coupling regions A
and B to C.

Note that in the case of thermal convection from a point source (Yih 1951) the
condition that the heat flux in the plume is constant (the equivalent to 4.8) introduces
an extra condition which allows a similarity solution to be found. Here, a similarity
solution can be obtained from the equations alone and this similarity solution does
satisfy the condition (4.8). Alternatively, we can say that the similarity solution must
satisfy (4.8) and that in three dimensions the addition of the chemotaxis and oxygen
consumption terms to the plume equations does not alter the form of the similarity
solution.

4.4. Analytic solutions for γ = 0

In general equations (4.7a–c) for H , G′ and F must be solved numerically. It is,
however, possible to find an analytic solution when γ = 0, i.e. when chemotaxis is
unimportant in the plume itself, for particular values of the other parameters. In
this case, the scaling in equations (4.2a–e) is slightly different. We will assume that
β = O(1). When γ = 0 we scale W0 and P0 as before but we have C0 = 1, N0 = ε−2

and we write Γ = ε−2Γ̃ . Using these scalings and the similarity solution of (4.6)
equations (4.7a, b) become

ηG′′ + G′ − 1

δ
G′F − ηH = 0, (4.12a)

HF − ηH ′ = 0. (4.12b)

Equation (4.7c) is unchanged.
For the problem of thermal convection from a point source of heat, analytic

solutions can be obtained when the Prandtl number (equivalent to the Schmidt
number in bioconvection) takes the values 1 or 2 (Yih 1951). Following Yih (1951),
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we find four analytic solutions

Sc = 1, δ = 1 : F =
−6Aη2

1 + Aη2
, H =

96A2

Γ̃ (1 + Aη2)3
, G′ =

48βA2η

Γ̃ (1 + Aη2)3
,

Sc = 1, δ = 3
4

: F =
−6Aη2

1 + Aη2
, H =

96A2

Γ̃ (1 + Aη2)3
, G′ =

24βA2(Aη3 + 2η)

Γ̃ (1 + Aη2)4
,

Sc = 2, δ = 1 : F =
−8Aη2

1 + Aη2
, H =

128A2

Γ̃ (1 + Aη2)4
, G′ =

64βA2η

Γ̃ (1 + Aη2)4
,

Sc = 2, δ = 2 : F =
−8Aη2

1 + Aη2
, H =

128A2

Γ̃ (1 + Aη2)4
, G′ =

64βA2η

Γ̃ (1 + Aη2)3
.

All these solutions satisfy the boundary conditions at η = 0 and as η → ∞. The
value of A is set by the condition

∫ ∞
0
HF ′ dη = −Q. For Sc = 1 and δ = 1 or 3

4
this

gives A2 = QΓ̃/144 and for Sc = 2 and δ = 1 or 2 it gives A2 = 5QΓ̃/1024. These
analytic solutions can be used to check the numerical solution and also as a starting
point for it.

4.5. Series expansion for η � 1

Equations (4.7a–c) are singular at η = 0 and therefore cannot be solved numerically
over the entire range of η. However, a series expansion for η � 1 can be used to start
the numerical solution away from η = 0. For η � 1, we pose an expansion of the
form

H = h0 + ηh1 + η2h2 + η3h3 + η4h4 + η5h5 + · · · ,
G′ = g0 + ηg1 + η2g2 + η3g3 + η4g4 + η5g5 + · · · ,
F = f0 + ηf1 + η2f2 + η3f3 + η4f4 + η5f5 + · · · .

In order to satisfy the boundary conditions at η = 0 we require

h1 = g0 = f0 = f1 = f3 = 0,

but we require h0 6= 0 in order to have a non-zero cell concentration at η = 0 and
f2 6= 0 in order to have w 6= 0 at η = 0. A solution can be found in terms of the two
constants h0 and f2 as follows:

h2 =
2h2

0

4
+
h0f2

2
, (4.13a)

h4 = 3
16
h3

0 + 5
16
h2

0f2 +
1

16δ
h2

0f2 +
h0f

2
2

8
+
h2

0Γ̃

64
, (4.13b)

g1 = 1
2
h0, (4.13c)

g3 =
1

8δ
h0f2 + 1

8
h2

0 + 1
8
h0f2, (4.13d)

f4 =
h0Γ̃

16
, (4.13e)

f6 = 1
192
h2

0Γ̃ +
h0f2Γ̃

192
(1 + Sc−1), (4.13f )

h3 = g2 = g4 = f5 = f7 = 0. (4.13g)
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Figure 3. Graphs of G, G′, H , F , w = −F ′/η, Z1/2u = F/η − 1
2
F ′ and ur = F − 1

2
ηF ′ for an

axisymmetric plume. (δ = 1, Sc = 1, Γ̃ = 1 and Q = 1.)

4.6. Results

The ordinary differential equations (4.7a–c) for H , G′ and F are solved numerically
subject to the given boundary conditions. We start the solution at η = 0.01 using the
series solution given in § 4.5, which depends on the two unknown constants h0 and
f2. The method of solution is to treat h0 and f2 as variables and introduce them into
the system of equations (by adding equations h′0 = f′2 = 0) and impose the cell flux
Q = − ∫ ∞

0
HF ′ as a constant of the solution. We therefore have an eighth-order system

of ordinary differential equations subject to six boundary conditions at η = 0.01 and
two as η → ∞. This system of equations is solved using the NRK routine (Cash &
Moore 1980) which uses finite differences and Newton iterations. We compared the
results of the numerical solution with the analytic solution in the case β = O(1), γ = 0
given in § 4.4 and with the series expansion for η � 1 given in § 4.5 and found that in
both cases the numerical solution and the analytic solution agreed.
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Figure 4. Graphs of H , G, G′, F and w for δ = 1, Sc = 1, Γ̃ = 1 and Q = 0.1, 1, 5.
· · · , Q = 0.1; - - -, Q = 1; —–, Q = 5.

The solution depends on the parameters δ, Sc and Γ̃ and on the cell flux Q.
Figure 3 contains the solutions for δ = 1, Sc = 1, Γ̃ = 1 and Q = 1. G is calculated
by numerical integration of G′ and contains an arbitrary constant which we have
chosen so that G = 0 (i.e. θ = 1) at the edge of the plume. The oxygen concentration
is given by θ = 1 + (2/γ)G(η) and we will assume that γ is such that θ is always
positive so that all the bacteria are active. From figure 3(a), we see that the oxygen
concentration inside the plume is lower than that outside, which is reasonable since
the plume contains a high concentration of bacteria which consume oxygen. Figures
3(d)–3(g) show that as η → ∞, F → constant, so w → 0 and ru → constant, as
required by the boundary conditions. Calling this constant −M (as in (4.11)), we find
that in this case M = 6.79.

We first considered fixed values of δ, Sc and Γ̃ and varied the value of the cell flux
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Figure 5. Graph of fluid flux into the plume, M, against cell flux downwards in the plume, Q, for
an axisymmetric plume. (δ = 1, Sc = 1, Γ̃ = 1).

Q. Figure 4 shows graphs of H , G, G′, F and w for δ = 1, Sc = 1, Γ̃ = 1 and Q = 0.1,
1 and 5. As we would expect, the cell concentration in the plume is greater for higher
values of Q but the width of the plume decreases slightly. The higher concentration
of cells leads to a greater consumption of oxygen so that the oxygen concentration at
the centre of the plume decreases. As the cell flux increases, the vertical fluid velocity,
w, at the centre of the plume increases and the value of M increases, indicating that
the horizontal fluid flow into the plume increases. Figure 5 is a graph of the fluid flux
into the plume, M, against the cell flux downwards in the plume, Q.

Figure 6 shows solutions for δ = 1, Γ̃ = 1, Q = 1 and Sc = 0.2, 1 and 5. From
these graphs we can see that as Sc increases the cell concentration in the centre
of the plume increases but the cell profile becomes narrower and the total number
of cells in the plume decreases. The oxygen concentration in the plume is therefore
higher and the oxygen profile is also narrower. The fluid velocity w in the centre
of the plume increases as Sc increases, therefore the total cell flux is the same. At
large values of Sc the velocity is non-zero over a much larger range than the cell and
oxygen concentrations, indicating that the plume has a two-layer structure similar to
that found in thermal convection at large Prandtl number (Kuiken & Rotem 1971;
Worster 1986).

Figure 7 shows solutions for δ = 1, Sc = 1, Q = 1 and Γ̃ = 0.2, 1 and 5. When
Γ̃ is large the effect of buoyancy is important. As Γ̃ increases, the cell concentration
in the centre of the plume increases, but the plume becomes narrower, so the total
number of cells at any Z decreases. Therefore the oxygen profile becomes narrower
and the oxygen concentration in the centre of the plume increases. The fluid velocity
w in the centre of the plume is larger for large values of Γ̃ , because the force of
buoyancy is more important, but w falls to zero more rapidly than for small Γ̃ . M
decreases as Γ̃ increases, indicating that less fluid is entrained by the plume.

Figure 8 shows solutions for Γ̃ = 1, Sc = 1, Q = 1 and δ = 0.2, 1 and 5.
δ = DC/DN0

, therefore a large value of δ corresponds to a large value of oxygen
diffusion relative to cell diffusion. As δ increases, inward chemotaxis takes place over
a wider area and the plume becomes wider. The cell concentration and the fluid
velocity w decrease in the centre of the plume. Increasing δ for fixed β makes the
oxygen consumption per cell greater, therefore the value of G at the centre of the
plume decreases. For δ = 5, the oxygen gradient, G′, is non-zero over a much wider
area than either the cell concentration, H , or the vertical fluid velocity, w.
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Figure 6. Graphs of H , G, G′, F and w for δ = 1, Q = 1, Γ̃ = 1 and Sc = 0.2, 1, 5.
· · · , Sc = 0.2; - - -, Sc = 1; —–, Sc = 5.

5. Axisymmetric outer flow
The descending plume of fluid entrains fluid from the outer region and therefore

drives a fluid motion there. The cell concentration is negligible in this outer region,
since all the bacteria have swum up into the upper boundary layer, therefore the
effect of buoyancy is negligible. If the Schmidt number is large or the flow is slow, the
governing equations in this outer region are the continuity equation and the Stokes
equations:

∇P = ∇2U . (5.1)

We will solve these equations in the outer region 0 < Z < 1, b < R < d, where R = d
is the outer boundary and R = b is a constant, taken to represent the edge of the



138 A. M. Metcalfe and T. J. Pedley

0.5

0.3

0 15 20

(a)

H

0.25

0.15

0.20

G′

0

(b)

20155

0

–0.5

–1.5

G

0 5

0

F –4

–6

–8

0 10 20 25

(c)

(d)

è è

(e)

0 5 10
è

w
1.5

1.0

0.5

5 10 10

–1.0

15 30

15

0.2

0.1

2010

0.4

0.10

0.05

–2

155

2.5

2.0
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plume. We will let b→ 0 later. U is written in terms of a stream function ψ and we
impose stress-free boundary conditions at the upper and lower surfaces: at Z = 0, 1

∂ψ

∂R
=
∂2ψ

∂Z2
= 0. (5.2a)

At the outer boundary R = d, we impose U = ∂W/∂R = 0:

∂ψ

∂Z
= 0, − 1

R

∂2ψ

∂R2
+

1

R2

∂ψ

∂R
= 0. (5.2b)

The boundary conditions at the edge of the plume (R = b) are set by the similarity
solution in the plume. The vertical fluid velocity in the plume, w, tends to zero at
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the edge of the plume. Since W = ε−2w, this boundary condition can be satisfied by
requiring that either W is finite at R = b or W = 0 at R = b. Which of these two
possibilities holds depends on the higher-order solutions in the plume. In either case
we require

− 1

R

∂ψ

∂R
= constant (5.2c)

at R = b, and the constant may be zero.
The plume entrains fluid from the outer region and at the edge of the plume

ru = −M, which is RU = −M in the unscaled outer variables. Conservation of
mass shows that this uniform inflow cannot persist all the way to the bottom of the
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chamber. We could instead postulate a lower boundary ZL of the zone of interest
at which, outside the plume, there is an upflow equal in flow rate to the downflow,
πMZL, in the plume at that level. Alternatively, since we are most interested in
the solution in the upper part of the fluid, we could postulate that RU = −M
at r = b in the upper part of the plume with a corresponding outflow in the
lower part. We choose the latter; the exact form of this boundary condition in the
lower part is unimportant. The similarity solution in the plume may not be valid
throughout the entire depth of fluid anyway, a possibility which will be more fully
discussed later. Thus, we take the boundary condition at the inner boundary R = b
to be

∂ψ

∂Z
= α̃, (5.2d)

where α̃ is equal to −M for 0 < Z < 0.75 and then increases smoothly so that∫ 1

0
U dZ = 0, to ensure conservation of fluid. We choose

α̃ =

{ −M for 0 < Z < 0.75,

2560M(Z − 0.75)3 − 7680M(Z − 0.75)4 −M for 0.75 < Z < 1.
(5.3)

Taking the curl of (5.1) gives

D2D2ψ = 0, (5.4)

where the differential operator is

D2 =
∂2

∂R2
− 1

R

∂

∂R
+

∂2

∂Z2
.

We pose a separable solution of the form

ψ = f(R)g(Z),

where ∂2g/∂Z2 ∝ g. In the light of the boundary conditions (5.2a) on Z = 0, 1 we
will choose ∂2g/∂Z2 = −k2g so that g(Z) = sin (kZ), where k = nπ and n = 1, 2, 3 . . . .
We find that the solution for f is

f = ARI1(kR) + BR2I ′1(kR) + CRK1(kr) + DR2K ′1(kR),

where I1 and K1 are modified Bessel functions, the primes denote (1/k)(∂/∂R) and A,
B, C and D are arbitrary constants. The general solution to (5.4) satisfying (5.2a) is
thus

ψ =
∑
n

sin (nπZ)(AnR
2I ′1(nπR) + BnRI1(nπR) + CnR

2K ′1(nπR) + DnRK1(nπR)).

The constants An, Bn, Cn and Dn are chosen so that the boundary conditions at
R = b, d are satisfied.

If the constant in (5.2c) is non-zero, these have the solution

An = 1
2
n2π2αnλn + O((log ( 1

2
nπb))−1), (5.5a)

Bn = − 1
2
nπαnλn(1 + nπpn) + O((log ( 1

2
nπb))−1), (5.5b)

Cn = − 1
2
n2π2αn + O((log (nπb))−1), (5.5c)

Dn = 1
2
nπαn + O((log ( 1

2
nπb))−1), (5.5d)
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Figure 9. Streamlines for axisymmetric outer flow when M = 6.79, d = 1.

where

αn =
61 440M

n5π5
cos (nπ) +

30 720M

n5π5
cos ( 3

4
nπ) +

368 640M

n6π6
sin ( 3

4
nπ),

λn =
K1(nπd)

I1(nπd)
, pn = (nπI1(nπd)K1(nπd))

−1.

(If the constant in (5.2c) is zero, the leading terms are unaltered, only the higher-order
terms change.) The (log ( 1

2
nπb))−1 terms arise from the series expansion of K1 for

small b (see Metcalfe 1998 for full details).
These coefficients can be used to plot streamlines of the axisymmetric outer flow.

Figure 9 shows the streamlines calculated using the values of the coefficients given
in (5.5a–d), i.e. when the constant in (5.2c) is non-zero, when d = 1 and M = 6.79,
the value of M corresponding to the graphs of figure 3. The streamlines in the figure
were calculated using the first twenty and the first forty terms of the series and they
lie on top of each other.

6. Matching the axisymmetric solutions in different regions in the
limit βγ � 1

So far we have modelled the deep chamber experiments of figure 1 in three separate
regions: an upper boundary layer of depth λ, a falling plume of width ε and the region
outside the plume. In § 3, we found a solution for the cell and oxygen concentrations
and the fluid velocity in the upper boundary layer. This solution depends on the
size of the Rayleigh number, Γ , and the scaling for the horizontal fluid velocity, UB .
In § 4, we derived a similarity solution in the falling plume and in § 5 we found a
solution for the flow in the outer region driven by the falling plume. We now match
the solutions in these different regions. We are considering the limit βγ � 1, as it is
only in this limit that an upper boundary layer forms.

In the outer region, the horizontal fluid velocity is given by

U =
∑
n

nπ cos (nπZ)[AnRI
′
1(nπR) + BnI1(nπR) + CnRK

′
1(nπR) + DnK1(nπR)]. (6.1)
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At the edge of the upper boundary layer, Z = λ, this is

U =
∑
n

nπ[AnRI
′
1(nπR) + BnI1(nπR) + CnRK

′
1(nπR) + DnK1(nπR)] + O(λ2), (6.2)

which indicates that the horizontal fluid velocity in the upper layer is O(1). We
therefore require

UB = 1, (6.3)

and u0(R) (§ 3) is given by (6.2). We will write u0ε = u0(R = ε) for the fluid velocity in
the upper layer at the edge of the plume R = ε. Equation (6.2) gives

u0ε =
1

ε

∑
n

nπαn. (6.4)

We do not consider in detail the turning region in which the inward flow of cells
in the boundary layer is converted into the falling plume; experience with other
boundary layers suggests that the flow here is inviscid and passive (e.g. Lyne 1971).
However, the cell flux and the fluid flux between the upper layer and the plume must
match. The fluid flux in the plume is given by

MZ, (6.5)

where M is a constant of O(1). At the top of the plume the fluid flux is therefore
O(λ). The fluid flux out of the upper boundary layer into the plume is O(ελUBu0ε).
From (6.3) and (6.4) this is O(λ), which is consistent with the fluid flux in the plume.

The similarity solution in the plume has constant cell flux

πε2NAWA

∫ ∞
0

nwr dr =
λ

ε2
πQ.

The cell flux out of the upper boundary layer into the plume is

−2πελUBλ
−1

∫ ∞
0

n0εu0ε dz,

where n0ε = n0(R = ε). Using (3.3), (6.3) and (6.4), this cell flux is

−2π

a

∑
n

nπαn,

which is O(1) if a is O(1). This is consistent with the cell flux in the plume only if

λ = ε2, (6.6)

thus determining ε in terms of λ. Moreover, for the two cell fluxes to be equal we
must have

Q =
2

a

∑
n

nπαn =
2M

a
. (6.7)

The scaling of (6.6) gives

Γ = λ−2Γ̃ .

Therefore Γ/UB = O(λ−2) and the upper-layer solution has u0 = u0(R), which is
consistent with (6.2), and a is a constant, which is consistent with (6.7).

Now the constant a is determined by the initial state of the system (equation (3.3)):
either a = 1 for a sufficiently shallow chamber or a = α−1

c for a deep chamber.
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Therefore, (6.7) represents a straight line in the (Q,M)-plane and its intersection with
the curve in figure 5 determines unique values for Q and M, given all the other
parameters. For example, if a = 0.96 as in the example in § 3, figure 5 gives Q = 20.6,
M = 9.9.

The scaling in (6.6) requires that the upper boundary layer is much narrower than
the plume. Figure 1 shows photographs of the deep chamber experiments and the
cell-rich upper boundary layer does appear to be thinner than the plume so in that
respect, at least, the model is in qualitative agreement with the experiments.

7. The two-dimensional problem
The two-dimensional problem is handled in a similar manner to the three-

dimensional one. As before, we study the case where βγ � 1 and consider three
separate regions of fluid.

7.1. Upper boundary layer in two dimensions

In the two-dimensional upper boundary layer we write the governing equations in
terms of Cartesian coordinates X and Z and write the velocity as U = (U, 0,W ). We
rescale the equations using the same scaling as in three dimensions and neglect terms
which are obviously O(λ2) compared with the leading ones to obtain

λ2UB(unX + wnz) = nzz − 2
∂

∂z
(nCz), (7.1a)

Czz − n =
λ2UB

δ
(uCX + wCz), (7.1b)

uX + wz = 0, (7.1c)

Sc−1λ2UB(uuX + wuz) = uzz − λ2PB

UB

pX, (7.1d)

Sc−1λ2UB(uwX + wwz) = wzz +
Γn

UB

− PB

UB

pz, (7.1e)

where the subscripts denote differentiation. The boundary conditions at z = 0 are

nz − 2nCz = 0, C = w = uz = pX = 0.

We expand n, C and u in powers of λ as in (3.5) for the three-dimensional case and
assume that λ2UB � 1 so that advection is unimportant at leading order in (7.1a, b).
Leading order in equations (7.1a, b) gives equations (3.6a, b) which have the solution
n0, θ0 given in (3.3), where a may be a function of X.

If UBλ
2Sc−1 � 1, the leading-order terms in equations (7.1d, e) give equations

(3.6c, d) with R replaced by X. The solution to these equations is similar to that in the
axisymmetric case. If Γ/UB � λ−2, we find that a must be constant. If Γ/UB = λ−2,
we must have u0 = u0(X) and a constant and if 1� Γ/UB � λ−2, we must also have
u0 = u0(X) but a may be a function of X.

7.2. Two-dimensional falling plumes

The similarity solution for a three-dimensional axisymmetric descending plume of
cell-rich fluid was described in § 4. We will now discuss the two-dimensional plume
and show that it is not possible to find a similarity solution which satisfies realistic
boundary conditions and has non-zero constant cell flux in the plume.
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In the plume we scale the horizontal coordinate as X = εx, and N, θ, W , P and
U as in (4.1b). The scaling factors NA, CA,WA and PA, which are chosen so that
appropriate terms are retained in the governing equations, have the same values as in
three dimensions. Using these scalings and retaining only the leading-order terms in
the governing equations gives, after some manipulation,

u
∂n

∂x
+ w

∂n

∂Z
+ 2

∂n

∂x

∂C

∂x
+ 2n

∂2C

∂x2
− ∂2n

∂x2
= 0, (7.2a)

∂2C

∂x2
− 1

δ

(
u
∂C

∂x
+ w

∂C

∂Z

)
− n = 0. (7.2b)

∂u

∂x
+
∂w

∂Z
= 0, (7.2c)

Sc−1

(
u
∂2w

∂x2
+ w

∂2w

∂x∂Z

)
= Γ̃

∂n

∂x
+
∂3w

∂x3
. (7.2d)

Symmetry about x = 0 requires that at x = 0

∂n

∂x
=
∂C

∂x
= u =

∂w

∂x
= 0. (7.3a)

At the edge of the plume the cell concentration, the oxygen gradient and the vertical
fluid velocity should tend to zero. These boundary conditions are as x→∞

n→ 0,
∂C

∂x
→ 0, w → 0. (7.3b)

We now seek a similarity solution to equations (7.2a–d) of the form given in (4.4).
Substituting this solution into equations (7.2a, b, d) and equating powers of Z in each
term gives a = 1

2
, b = 0, c = −1, d = 0, which is identical to the three-dimensional

case. We therefore define the similarity variable η = x/Z1/2 and pose a solution:

n = Z−1H(η), C = G(η), ψ = Z1/2F(η), u = 1
2
Z−1/2(F − ηF ′), w = −F ′,

where primes denote differentiation with respect to η. Substituting this solution into
equations (7.2a–d) gives

1
2
H ′F + F ′H + γH ′G′ + γHG′′ −H ′′ = 0, (7.4a)

G′′ − 1

2δ
G′F −H = 0, (7.4b)

FIV − 1
2
Sc−1(FF ′′′ + F ′F ′′)− Γ̃H ′ = 0. (7.4c)

The boundary conditions become at η = 0

H ′ = G′ = F = F ′′ = 0,

as η →∞
H → 0, G′ → 0, F ′ → 0.

Integrating equation (7.4a) once with respect to η and applying the boundary
conditions at η = 0 gives

1
2
HF + γHG′ −H ′ + 1

2

∫ η

0

HF ′ dη = 0; (7.4d)
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the presence of the last term distinguishes this equation from the corresponding
equation in the axisymmetic case (4.7a). Applying the boundary condition H → 0 as
η →∞ (which means that H ′ → 0 as η →∞) gives∫ ∞

0

HF ′ dη = −Q = 0, (7.5)

where Q is defined in (4.9). The cell flux in the plume is
∫ ∞

0
nw dx = QZ−1/2, which

is zero from (7.5). This is clearly not the case in any plume driven by the negative
buoyancy of the cells, such as those in the experiments of figure 1. Going to higher
order in Z−1 does not improve matters.

If Q was non-zero the cell flux in the plume would not be constant. This is not
realistic since it would involve cells swimming into or out of the plume and the
cell concentration at the edge of the plume would be non-zero, indicating that the
cell concentrations in the plume and outer region are of similar magnitude. This is
inconsistent with a boundary-layer scaling and is not borne out by the experiments of
figure 1. We therefore conclude that although equations (7.2a–d) may have a solution
which satisfies the boundary conditions (7.3a, b) and gives non-zero cell flux in the
plume, such a solution will not be a similarity solution of the form (4.4).

The difference between the two-dimensional problem of Yih (1952) for a thermal
plume and this bioconvection plume lies in the interaction between the cells and the
oxygen. If chemotaxis or oxygen consumption are not important in the plume (γ = 0
or β = 0 in 7.2a–d) it is possible to find a similarity solution which satisfies the
boundary conditions (7.3a, b) and has non-zero constant cell flux in the plume; in
fact, this is simply the solution of Yih (1952) with the plume width h proportional to
Z2/5 and the similarity variable η = x/Z2/5. In the three-dimensional axisymmetric
plume the chemotaxis and oxygen consumption terms do not affect the similarity
solution, but in the two-dimensional case they do.

7.3. Two-dimensional outer flow

In two dimensions, the governing equations in the outer region are the continuity
equation and (5.1), as in three dimensions. We write U in terms of a stream function,
ψ, and solve (5.1) in the region 0 < Z < 1 and 0 < X < d. As in the three-dimensional
case, we impose stress-free boundary conditions at the upper and lower surfaces: at
Z = 0, 1

∂ψ

∂X
=
∂2ψ

∂Z2
= 0. (7.6a)

At the outer boundary X = d, we impose

∂ψ

∂Z
= 0,

∂2ψ

∂X2
= 0. (7.6b)

The boundary conditions at the edge of the plume (X = 0) are set by the solution in
the plume. In two dimensions, there is no similarity solution so we arbitrarily impose
boundary conditions similar to those in three dimensions. We will require that w → 0
and u→ −M at the edge of the plume, where w and u are the scaled variables in the
plume. These boundary conditions are therefore at X = 0

∂ψ

∂X
= 0,

∂ψ

∂Z
= ε−1α̃, (7.6c)

where α̃ is given in (5.3). The ε−1 factor arises because in two dimensions the horizontal
fluid velocity in the plume, u, is O(ε−1).
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Figure 10. Streamlines for the two-dimensional outer flow when M = 1, d = 1.

Proceeding as in three dimensions, we find that the general solution for the outer
flow which satisfies the boundary conditions (7.6a) is

ψ =
∑
n

sin (nπZ)(Ãne
nπX + B̃nXenπX + C̃ne

−nπX + D̃nXe−nπX).

The coefficients Ã, B̃, C̃ and D̃ are chosen so that the boundary conditions at X = 0, d
are satisfied and are:

Ãn = (1 + e2nπd + 2nπde2nπd)qn, (7.7a)

B̃n = (−nπ− nπe2nπd)qn, (7.7b)

C̃n = (− e2nπd + 2nπde2nπd − e4nπd)qn, (7.7c)

D̃n = (−nπe2nπd − nπe4nπd)qn, (7.7d)

where

qn = ε−1αn(1 + 4nπde2nπd − e4nπd)−1.

In figure 10, we plot the streamlines using the first forty terms of the series for d = 1
and M = 1. The choice of the value of M is arbitrary since we have no plume solution
to which we can match it.

We now attempt to match the solutions in the three different regions in the same
way as for the three-dimensional axisymmetric case. The horizontal fluid velocity at
the edge of the upper boundary layer Z = λ in the outer region is

U =
∑
n

nπ(Ãne
nπX + B̃nXenπX + C̃ne

−nπX + D̃nXe−nπX) + O(λ2), (7.8)

which is O(ε−1), indicating that in two dimensions UB = O(ε−1). We write u0ε =
u0(X = ε) for the fluid velocity in the upper layer at the edge of the plume R = ε and
equation (7.8) gives

UBu0ε = ε−1
∑
n

nπαn.

Using this we find that the fluid flow out of the upper boundary layer into the plume
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is O(λUBu0ε) = O(λε−1) and the cell flux out of the upper boundary layer into the
plume is O(λUBu0ελ

−1) = O(ε−1).
We have no two-dimensional similarity solution in the plume, but we assume that

the solution is like the three-dimensional solution in that the cell flux in the plume
is constant and the fluid flux is proportional to Z . Then the cell flux in the plume is
O(λε−3) and the fluid flux is O(λε−1). As in the three-dimensional case, it follows that
the fluid flux in the upper boundary layer agrees with that in the plume, and the cell
flux in the upper boundary layer agrees with that in the plume if ε = λ1/2. However,
this is not a firm conclusion since it is based on an assumption about the solution in
the plume. Thus, the two-dimensional case remains unresolved.

8. Conclusion
In this paper we have endeavoured to model deep chamber bioconvection exper-

iments as shown in figure 1. We considered three different regions: a thin upper
boundary layer of thickness λ, a falling plume of width ε and the region outside
the plume. We considered only the upper part of the chamber, in which θ > 0 and
the bacteria are active. We examined the two-dimensional and the three-dimensional
axisymmetric cases.

Hillesdon et al. (1995) showed that the steady-state, non-convective solution has a
thin upper boundary layer in the limit βγ � 1. This boundary layer has thickness
λ = 2/βγ and we used the scaling of Hillesdon et al. (1995) to find solutions in the
upper boundary layer. The solution is essentially the same in two and three dimensions
and depends on the magnitude of the Rayleigh number, Γ , and the scaling of the
horizontal fluid velocity in the upper layer, UB .

The upper layer is unstable and this instability takes the form of falling plumes of
cell-rich fluid. In three dimensions, we found a similarity solution for the plume, similar
to that for thermal convection, in which the width of the plume is proportional to
λ1/2Z1/2 and the cell flux in the plume is constant. At the edge of the plume ru→ −M
indicating that the plume entrains fluid from the outer region. In two dimensions, it
is not possible to find a similarity solution for the plume which takes account of all
the terms, has non-zero cell flux and satisfies the boundary conditions, because of the
interaction of the n and θ terms.

The falling plume entrains fluid and drives a flow in the outer, cell-depleted region.
In three dimensions, the outer flow can be found as a Fourier–Bessel series and we
can use this solution to predict the horizontal fluid velocity in the upper boundary
layer. We can find a similar solution for the outer flow in two dimensions, if we
assume certain boundary conditions at the edge of the plume. Finally, we matched
the solutions at the boundaries of the different regions and found that the solutions
are consistent if the width of the plume, ε, is λ1/2 (6.6).

According to the three-dimensional similarity solution, the width of the plume is
proportional to λ1/2Z1/2 so that the width of the plume increases as Z increases. At
sufficiently large Z , (Z = O(λ−1/2)), the assumption that the plume is narrow will
no longer hold, the ∂/∂Z terms neglected in (4.3a–c) will become important and the
similarity solution will break down. The plume solution described here assumes that
θ > 0 so that all the bacteria are actively swimming. When the plume reaches the
lower, oxygen-depleted region (Z = 1) the solution described here will no longer be
valid. Since λ� 1, the plume will reach the lower region before the similarity solution
breaks down.

The model for the falling plume experiments described in this chapter is only
quasi-steady. The cell-rich upper boundary layer feeds a plume which takes bacteria
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from the upper boundary layer to the lower part of the fluid. We have assumed that
once the bacteria reach the lower part of the fluid (where θ = 0) they remain there.
We have also assumed that the cell concentration in the outer region is negligible
and that there is no significant bacterial upswimming from the outer region to the
upper boundary layer. The upper boundary layer is losing cells to the plume without
gaining any from the outer region and the concentration of bacteria in the upper
layer is therefore decreasing. This means that a and hence Q will vary slowly with
time, which could be an interesting development for future study. At some time the
cell concentration will become less than O(λ−1) and the solution described here will
break down.

In the experiments of figure 1, the plume carries oxygen into the lower part of
the fluid, thereby resuscitating cells which had become inactive because of a lack of
oxygen. The model described here does not take this effect into account and is valid
only at times before it becomes important. It is likely that a numerical simulation
would be required to capture the full behaviour of the system.
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